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Abstract--elosed-form solutions are derived for elastica with axial and shear deformations, using
elliptic integrals. The theories used here are the Timoshenko beam theory of finite displacements
with finite strains and that with small strains. Elliptic integral solutions are further transformed to
normal forms to obtain accurate solutions. As a result, both of the closed-form solutions are
expressed in normal forms from the first to the third kind ofelliptic integrals. With these solutions,
two kinds of structures are analyzed to examine the effect of shear deformations along with the
accuracy of the approximate theory of finite displacements with small strains.

I. INTRODUCTION

The exact governing equations for the finite displacement beam theory become highly
nonlinear and, hence, it is very difficult to solve these equations analytically. Thus, for
practical purposes, problems of this kind are usually solved by the methods based on the
finite element approximations.

However, the closed-form solutions for these problems are still important to the
practical point that the accuracy of the approximate methods can be precisely evaluated by
these solutions, to say nothing of the mathematical importance. It is well known that the
closed-form solutions can be obtained for elastica problems, using elliptic integrals.
However, the elliptic integral solutions presented so far were primarily for the inextensional
elastica, where the elongation of a centroidal axis is ignored: see Timoshenko and Gere
(1961), Sliter and Boresi (1964), Lee et al. (1968), Britvec (1973), Law (1982) and Seide
(1984), among others. Different from the above solutions ignoring axial deformation, we
recently derived the general closed-form solutions of plane elastica, precisely considering
the deformation ofcentroidal axis (Goto et al., 1987). In this derivation special efforts were
made to reduce the elliptic integrals to normal forms, i.e. normal forms from the first to the
third kind. As a result, highly accurate solutions were successfully obtained for extensional
elastica.

Herein, we further derive the closed-form solutions of elastica, taking into account
shear deformation in addition to axial deformation. In this derivation, we utilize the theory
presented by Reissner (1972) which exactly considers the geometrical nonlinearity within
the framework of the Timoshenko beam theory. In view of the practical importance, we
also derived the solutions under the assumption of small strains, since strains of beams are
usually small compared with unity even when beams undergo large displacements.

The closed-form solutions, derived here, are expressed in terms of elliptic integrals.
Thus, following the same procedure as used by Goto et al. (1987), they are transformed to
normal forms to obtain accurate solutions.

With the closed-form solutions so obtained, we analyzed a few simple structures in
order to demonstrate the accuracy of the present solutions as well as to examine the effect
of shear deformation. These numerical results are also intended to be used as bench marks
to validate the accuracy of approximate numerical analyses.

To integrate the governing differential equations in closed-form, the cross-section and
the initial curvature of beams are assumed constant. Further, it is assumed that beams are
only subjected to concentrated loads.
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2. GOVERNING EQUATIONS OF THE TIMOSHENKO BEAM UNDER FINITE DISPLACEMENTS

Reissner (1972) was the first to present a finite displacement theory of the curved
Timoshenko beam, where the geometrical nonlinearity is precisely taken into account under
the assumption of the Timoshenko beam. Later, Iwakuma and Kuranishi (1984) and
Chaisomphob et al. (1986) derived the same theory from continuum mechanics, with the
help of variational calculus.

Reissner presented in his theory a constitutive model and showed a procedure to
determine the elastic constants through experiments. Indeed Reissner's procedure is accu
rate, but it is cumbersome to carry out an experiment to obtain constitutive equations.
Thus, for simplicity we adopt here the theoretical approach used by Chaisomphob et al.
(1986) to obtain the constitutive relation, based on Reiss~r'smodel.

In order to express the governing equations, two kinds of coordinates shown in Fig. I
are introduced here. One is Cartesian coordinates (y, z) fixed in space and the other is the
orthogonal curvilinear coordinates (n, s) with s taken along the centroidal axis of a curved
member before deformation.

Using these coordinates, the governing equations of the Timoshenko beam are shown
in Table I, classified according to the theories. The theory of (a) Finite Displacements
with Finite Strains corresponds to Reissner's theory with the constitutive equations of
Chaisomphob et al. (1986), while the theory of (b) Finite Displacements with Small Strains
is derived from the theory of (a), approximated by the condition of small strains.

Here, we briefly explain the above theories along with the notations.
The kinematic relations for the above theories are obtained, using the assumption of

the Timoshenko beams. This assumption is that the transverse plane originally normal to
the centroidal axis remains plane after deformation. However, it should be noted in the
Timoshenko beam theory that the transverse plane does not necessarily remain normal to
the centroidal axis, different from the Bernoulli-Euler beam theory. Thus, after defor
mation, the angle between the tangent of the centroidal axis and the transverse plane
originally normal to the centroidal axis is expressed by 1t/2-A, as shown in Fig. I. The angle
A denotes the shear deformation of the beam. Henceforth, the transverse plane originally
normal to the centroidal axis is referred to as the cross-section.

If we define 0'0 and 0' as the angles between z-axis and the tangent of the centroidal
axis, respectively, before and after deformation, these angles can be related to the dis
placements on the centroidal axis as

Va = Jio sin 0' - sin 0'0,

wa = Jio cos 0' - cos 0'0' (la,b)

in which Vo and Wo are the y- and the z-components of the translational displacements on
the centroidal axis and 90 is given by
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Fig. I. Geometry of the initial and the deformed beam element.



(F'h F•." MI) = Mechanical boundary values at node i, (iiCli • WCli, tPi) = Geometrical boundary values at node i.

Table I. Timoshenko beam theories

Remarks: the following notations are used throughout tables:

f I f n
2

A= --dA, 1= --dA,
A I +"on A I +"on

Theories

(a) Finite Displacements with Finite Strains

(b) Finite Displacements with Small Strains

Equilibrium equations

IN cos (Il-A)- Vsin (II-A)}' = 0

{N sin (Il-A)+ V cos (II-A)}' = 0

M'-~(VcosA-Nsin A) = 0

{N cos (Il-A)- V sin (II-A)}' = 0

{N cos (Il-A)+ Vsin (II-A)}' = 0

M'-(V-NA) = 0

Constitutive relations

N = EA(JY:COS A-I)

V = kGAJi,. sin A

M = -ET(Il'-A'+lI:o)

N = EA(Ji,.-I)

V=kGAA

M = - £1(11' -A' +11:0)

Boundary conditions

Mechanical

N cos (Il-A)- V sin (II-A) = F"

Nsin (Il-A)+ V cos (II-A) = F•.,

M=M,

(fl = i. i+ I)

Geometrical

Vo = vOjI

Wo = wo,

II-A = tP,
(fI=i.i+I)
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(2)

In eqns (I) and (2), prime' denotes the differentiation with respect to s and this
notation is used hereinafter. It should be noted that x~ is constant, since the initial curvature
11:0 of the centroidal axis given below is constant from the assumption:

(3)

Equilibrium equations in Table I are derived based on the above kinematic field. The
first two are the equations of the force equilibrium decomposed into the y- and the z
directions. The third is the equation of the moment equilibrium, which newly appears in
the Timoshenko beam theory. Unlike the Bernoulli-Euler beam, the moment equilibrium
equation becomes independent due to the new degree of freedom added to express shear
deformation.

Constitutive equations adopted here are those derived theoretically by integrating the
assumed stress-strain relationship over the cross-sectional area. The strain components
used here are given by

e = {#cos(A)-I-n(GC' -A' +II:o)}/(I +Kon),

}' = #sin (A)/{2(1 +Kon)}, (4a,b)

where e is the axial strain defined as the component of extensional rate normal to the
transverse cross-section, while y is the shear strain which corresponds to the physical
component defined by Fung (l96S). On the centroidal axis, strain components of eqns (4)
exactly coincide with those shown by Reissner. With these strain components, the simplest
constitutive relations are given as follows, using Young's modulus E and shear modulus
G:

(f - Ee, t = 2Gy, (Sa, b)

in which (f and t are the normal and the shear stresses, respectively, defined in terms of the
deformed cross-section originally normal to the centroidal axis.

Consequently, the constitutive equations for the theory of (a) Finite Displacements
with Finite Strains are obtained by substituting cqns (4) and (S) into the following definitions
of sectional forces and moment:

N= L(fdA, M =L(fndA, v= LtdA' (6a-e)

where JA(') dA denotes the integration over the cross-sectional area. It should be noted,
however, in the constitutive relation between the shear force and the shear strain that the
shear coefficient k is introduced to improve the accuracy, since the distribution of the shear
stress obtained from cqns (4b) and (Sb) is considerably different from the actual distribution.

To simplify the constitutive relations, the location of the centroidal axis, i.e. the origin
of coordinate n, is selected such that

I n
--dA-O.

A I +Kon
(7)

The theory of (b) Finite Displacements with Small Strains is derived from the above
theory of (a), employing the conditions of small strains expressed as
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~-I«I, A«l. (8a,b)

The above conditions are used to simplify the moment equilibrium equations as well
as the constitutive relations. Constitutive relations can be obtained by introducing the
following strain components simplified by the use of eqns (8) :

e= {~-I-n(a'-A'+Ko)}/(1+Kon),

}' = Af{2(1 +Kon)}. (9a,b)

3. INTEGRAl'ION OF THE GOVERNING EQUATIONS

For simplicity, the integration procedure is shown primarily for the theory of (a) Finite
Displacements with Finite Strains, since this procedure is valid for the other theory.

Integrating the force equilibrium-equations and introducing the mechanical boundary
conditions at node i lead to

Ncos4>- Vsin4> = F:I ,

Nsin 4>+ Vcos4> = FYI, (lOa, b)

where the new variable 4> is used to express (a-A). 4> is interpreted as the angle between
the deformed transverse plane and the z-axis. Equations (10) can be solved for N and Vas

N = F:I cos 4> + F.vI sin 4>,

V = FYI cos 4> - F:I sin 4>.

The following relations are given by the constitutive equations in Table I .

(I Ia,b)

.JiocosA = N/EA+ I, Ji"osinA = V/kGA, 4>' = -M/El-Ko. (I2a-<:)

Substitution of eqns (12) into the equation of moment equilibrium in Table I yields

M' - V(N/EA+ I) +NV/kGA = o.

Equation (13) can be rewritten as follows, making use of eqns (II) and (12):

(13)

- EI4>" - (FYI cos 4> - F:/ sin 4»

-(Fylcos4>-F:lsin4» (F:lcos 4> +FYI sin 4» (;A -k~A) = O. (14)

Equation (14) is integrated by multiplying both sides by 4>'. Introducing the boundary
conditions at node i, the integrated equation is given in the form

(IS)

This equation is solved for 4>' as
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(1/ = f,
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(I6a)

where sign (.) takes ± 1 according to the ± of (.).
Equations (16) can further be integrated as

s-s; = f· (l/f)dc/>.J.,

(16b)

(17)

Equation (17) is used to calculate the rotational angle of the cross-section.
Next derived are the equations to calculate displacements. Equations (1) are rewritten

as

(vo +Yo)' =# (cos A sin c/>+sin Acosc/»,

(wo +zo)' = # (cos A cos <p - sin Asin <P), (lSa,b)

where (Yo, zo) is the coordinates of the centroidal axis before deformation.
After the substitution of eqns (11), (12) and (16), eqns (18) can be integrated in the

form

Then, we proceed to derive the equation to calculate the sectional moment. Noting
eqns (11) and (16), eqn (13) can be easily integrated as

(20)

As for the sectional forces, the y- and the z-components expressed as (F'.., F:) are
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constant with respect to s due to the absence of distributed forces. Thus, these components
are given by

(2Ia,b)

Equations (17), (19), (20) and (21) are the closed-form solutions of plane elastica
considering axial and shear deformations. These closed-form solutions, when applied to a
member i, i+ I, are summarized in Table 2, along with those for the theory of (b) Finite
Displacements with Small Strains. In this table, solutions are nondimensionalized, using
the member length I and the sectional rigidities Eiand kGA.

The closed-form solutions for the theory of (b) Finite Displacements with Small Strains
can be derived exactly in the same manner as shown in this section. In this derivation, the
kinematic relations given by eqns (18) are simplified as follows. using the conditions of
small strains:

(Vo+ Yo)' = )9:sint/>+Acost/>,

(wo+zo)' =)9:cos t/>-A sint/>. (22a,b)

It should be noted in the above equation that J90 cannot be approximated by unity, since
this approximation yields the inextensional theory.

In Table 2, the following notations are used to express the independent integral
components:

1"+ I 1 1"+ 1 sin t/> 1"+ 1 cos t/>II = 1- dt/>, 12 = -I dt/>, I) = -I dt/>,'i I "I 'i I

1"+ I sin t/> cos t/> 1"+I sin 2 t/>
14 = I dt/>, Is = -I dt/>

~ I ~ I

(23a-e)

where II depends on the theories. As can be seen from Table 2, nondimensionalized
solutions are governed by the two independent parameters expressed as

(24a,b)

where A. is the slenderness ratio and p is the ratio of the shear rigidity to the axial rigidity.
If we ignore the shear deformation in Table 2 by setting p = O. the solutions of (a) and

(b) respectively coincide with those derived from the Bernoulli-Euler beam theory of Finite
Displacements with Finite Strains and that of Finite Displacements with Small Strains
(Goto et al., 1987.)

In a specific case when p is equal to unity, I given by eqn (l6b) is reduced to

I . ( 1 {(M; )2 2Fy ; (',J,. ',J,.) 2Fti (,J,. ,J,.)}1/2= -sign M/E +1C0) E/+1C0 - m Stn.,,-Stn.,,; - Ej cos.,,-cos.,,; .

(25)

Further, the coefficient (1/EA-1/kGA) becomes zero in the governing integral equations of
eqns (19) and (20). Thus, excepting the additional terms of F,.;(s-s;)/kGA and Fz;(s-s;)/
EA in eqns(19a,b), eqns (17), (19) and (20) for the theory of (a) Finite Displacements with
Finite Strains exactly coincide with the corresponding equations for the customary in
extensional elastica under the Bernoulli-Euler assumption. As a result, independent integral
components are reduced to II-I) where I. is given by



(a) Finite Displacements with Finite Strains

I,';' I

Vllit I ~Yllit' = VIIi~YOi + (I ;P) (B,I.+ C;/s) + 12+ Ci~

WOitl+Zo;t' Wo; + Z'Oi (I-p) I
I =-I-+~(C,I.-BJs)+/3+B'F

Ai" =A/+CJ3- B;/2 + (I ;P) {(C;-Bl)/.+CiB/(I,-2/s)}

Bit' = Bi , Cit' = Ci

I, = -SigO(A,+KOI)[(A;+KoJf-2Ci (Sin",-sio4>;)

(I-p) , .
-2Bi(cost/J-cos4>;)-~ {B,C, (sm 2"'-sm24>i)

]

'/2
+ HBl-clHcos24>-cos2t/J,)}

MI F,I' F,.I' I)' EA
Rcmarks:A='i.:i' H ET , C= Ei' l=1 -,4" /1=1.(,,4"

Table 2, Integrdl solutions

(b) Finite Displacements with Small Strains

I, = I

VOlt I ~YOit , = ~1lI~Yo; + ~I ;P) (BJ.+CJs)+12+C;X2

I
Wo. t '+Z'Oit, _ WW+Z'Oi + ~-P)(C,I.-Bils)+/J+B/.i1

- I - I l2 A

Ai. I = A,+Cil,-BJ2- Xi {(C;-B;)J.+C,Bi(l,-2/ s)1

B't' = B,. Cit I = C,

I, = -Sign(A,+Kol)[<A,+KoW- 2C,(Sinq,-sin4>.>

-2B,(cos4>-COS4>i) + f2 {B,C, (sin 2q,-s'in24>,)

J
II2

+ HB;- C.') (cos 2'" - cos 24>,) I
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The notations of the above equation are the same as those shown in Table 2.

4. REDUCTION OF ELLIPTIC INTEGRALS TO NORMAL FORMS

The components of the integral equations are given by eqns (23). These integrals are
to be transformed to normal forms of elliptic integrals. For simplicity, sign (A;+ 1(0/)
included in the function I. is assumed unity in the transformation hereinafter. However,
the transformation under this assumption will not lose its generality, since sign (A;+ 1(0/)
can be let out of the integral sign by dividing the integral interval into subintervals such that
sign (A;+ 1(0/) becomes either positive or negative throughout the respective subintervals.

Different from the Bernoulli-Euler beam, II in the Timoshenko beam has the same
form in terms of trigonometric functions regardless of the theories and can be expressed as
follows:

where ao-Q, are non-zero constants and depend on the theories.
The transformation procedure for the present problem is exactly the same as that

shown for the Bernoulli-Euler beam theory of Finite Displacements with Finite Strains
(Goto et al., 1987). So, we here make a brief explanation on this procedure.

In the first place, we introduce a new variable xdefined by

x=tant (-1t~tP~1t)· (28)

Then, the trigonometric integrands of eqns (23) are transformed into algebraic ones
as

i-f'+1 R-
I; = /' d.i (i = 1-5),

l, 2

R\ = 2, R2 = 4x/(1 +x2), R3 = 2(I-x:)/(1 +x2),

R. = 4i(l-x2)/(1 +X2)2, R, _ 8x2/(l +.i2)2,

12 = (box·+b.X3+b2X2+b3X+b.)\ 2.

The coefficients of eqn (31) are given by

bo = ao-a. +a., bl "" 2(a2-a3), b2 - 2(aO-a4+2a,),

b3 "" 2(a2+a3), b. "" ao+al +a4.

(29)

(30a-e)

(31)

(32a-e)

Since I~ is the 4th-order polynominal, it can be known that the integrals given by eqn (29)
are expressed by the normal forms of elliptic integrals.

After somewhat cumbersome transformations shown by Goto et al. (1987), we can
express the integrals ofeqns (23) by the linear combination of three normal forms ofelliptic
integrals along with an elementary integral. Thus, the components of the integrals I.-I, can
be symbolically expressed as



384 Y. GoTO el al.

I 1 -F, 1:1-F+fI+G, 1,-F+fI+G, 14 -F+E+fI+G, Is-F+E+fI+G
(33a-e)

where F, E, and Ii are the normal forms of elliptic integrals described in Table 3, and Gis
an elementary integral.

It should be noticed for the Timoshenko beam that the normal forms from the first to
the third kind are included both in the solutions for the theory of (a) Finite Displacements
with Finite Strains and those of (b) Finite Displacements with Small Strains. This is different
from the Bernoulli-Euler beam (Goto et al., 1987).

As explained in Section 3, in the specific case when J1. becomes unity, the independent
integral components for the theory of (a) Finite Displacements with Finite Strains are
reduced to II-I) with II given by eqn (26). These independent components are exactly the
same as those of the inextensional elastica. Thus, making use of the results of Goto et al.
(1987), I.-I) can be expressed as follows in the manner similar to eqns (33),

(34a-e)

The above equations do not include the normal form of the third kind, which is replaced
here by that of the second kind.

5. NUMERICAL EXAMPLES

Two kinds of simple structures are analyzed to validate the present solutions. In this
analysis, the accuracy of the approximate theory of (a) Finite Displacements with Small
Strains is examined in comparison with the exact theory of (a) Finite Displacements with
Finite Strains. In addition, it is investigated how the shear deformation has an effect on the
geometrically nonlinear behavior of beams.

Since the axial force has a significant influence on the geometrical nonlinearity of
beams, two kind ofstructures subjected to axial forces, respectively, compressive and tensile,
are chosen as examples. One is a cantilever under an increasing compressive end force
together with a small end moment. The other is a beam with hinged ends subjected to an
increasing vertical force applied at the midspan. In this structure, a tensile axial force
appears with deflection. It should be noted for the beam with hinged ends that the customary
inextensional elastica cannot yield accurate solutions, since the assumption of inextensional
centroidal axis results in no deflection.

Table 3. Legendre-Jacobi's normal forms of elliptic integrals

The normal elliptic integral of the first kind

The normal elliptic integral of the second kind

The normal elliptic integral of the third kind
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Fig. 2. Examples; (a) cantilever· under compressive force and small end moment, (b) beam with

hinged ends under vertical load.

These structures are illustrated in Fig. 2, where the member length I is defined for the
respective structures.

Solution procedures for the above structures are explained in the following. Since these
procedures are exactly the same regardless of the theories, the integral equations for the
theory of (a) Finite Displacements with Finite Strains are used for this explanation.

First, a solution procedure is shown for the cantilever. The boundary conditions of
this structure are given by

FYi = 0, F'i = - F" M i = - M, VOI+ I = 0, WOi+ I = 0, 4>1+ I = 0. (35a-f)

Substituting eqns (35a--e, f) into eqn (17) yields the integral equation to calculate the
rotational angle <PI of the cross-section. This integral equation cannot be solved explicitly
for <PI' Hence, the bisection method is employed here as an iterative method to obtain <Pi'

Using 4>1' so obtained, along with eqns (35), other physical quantities, i.e. VOl' WOI, M I+ ..

Fyl+" and F'I+ I can be directly calculated from eqns (19)-(21) without iteration.
Next, the procedure is explained for the solution ofthe beam with hinged ends. Making

use of the structural symmetry, this problem is reduced to what is shown in Fig. 3. Thus
the boundary conditions are expressed by

Fyi = F.•./2, WI = 0, MI = 0, VOI+ I =0, WOI+ I = 0, <Pi+ I = O. (36a-f)

Substitution of eqns (36a--e,e,f) into eqns (17) and (19b) gives two integral equations
to calculate <PI and F,I' Similar to the case of cantilevers, these integral equations cannot be
solved explicitly for <PI' and F'I, and the two-variable bisection method is used to calculate
these unknown variables. After <PI and F'I are obtained, other physical quantities, i.e. VOl'

M I+ .. Fyl+ .. and F'I+ .. can be calculated, following the same procedure as is explained for
the cantilever.

In the numerical examples, the values of independent structural parameters A. and Jl
are chosen, based on the following philosophy. Considering that the effect of the axial and
the shear deformations becomes more evident in the structures with smaller slenderness
ratio, the values of A. = 4, 5 and 10 are adopted in addition to the usual value of A. = 100,
although such stocky members are not so practical. It should be noted here that A. = 4 is
adopted only for the cantilever, while A. = 5 is only for the beam with hinged ends. As for

Fig. 3. Structure equivalent to beam with hinged ends.
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the ratio of shear rigidity to axial rigidity, the values of p. = O. 3 and 10 are chosen. The
Timoshenko beam with i. = 0 corresponds to the Bernoulli-Euler beam without shear
deformation. 11. = 3 is the value for usual beams (Iwakuma and Kuranishi. 1984). p. = 10
represents the value for a beam with smaller shear rigidity.

As a computed result. the load-deflection relationships are summarized in Figs 4 and
5, respectively, for cantilevers and beams with hinged ends, classified according to the values
of slenderness ratio. In Fig. 4. the bifurcation loads for the perfect systems are shown for
reference. These bifurcation loads can be derived directly from the elliptic integral solutions
and this procedure is explained in the Appendix.

We first examine the accuracy of the approximate theory of (b) Finite Displacements
with Small Strains in comparison with the exact theory of (a) Finite Displacements with
Finite Strains.

In the case when i. = 100, as seen from Figs 4c and 5c, the load-deflection relation
ships are represented by one curve, regardless of the theories and the values of p.. Thus, it
can be said that the approximate theory under the assumption of small strains has enough
accuracy in the analysis of the structures with the usual slenderness ratio of i. = 100.

However, in case of stocky structures with;' =4, 5 and 10, an obvious difference exists
between the two theories. For cantilevers, this difference, which becomes most evident
around the buckling load, however, decreases in the post buckling range as the horizontal
load increases. In this case, the approximate theory of (b) Finite Displacements with Small
Strains overestimates the deflection. This tendency is different from that of beams with
hinged ends where the approximate theory underestimates the deflection. In the analysis of
cantilevers, the discrepancy between the theories is apt to be more pronounced.

In addition to i., the accuracy of the approximate theory is also influenced by 11., and
the smaller value of p. reduces this accuracy. In contrast, as p. takes larger values, the load
displacement curves of the approximate theory approach those of the exact theory. Then,
if jJ. = 10, the approximate theory almost coincides with the exact one even in the case of
;. = 4, 5 and 10.

To summarize the above results, it should be remembered in the application of the
theory of (b) Finite Displacements with Small Strains that this approximate theory loses
its accuracy specifically for stocky structures with smaller shear deformation.

Next, it is investigated how the nonliner behavior of beams is influenced by the shear
deformation. From Figs 4 and 5, as expected, an increase of the value of jJ., that is, a
decrease of the shear rigidity, results in an increase of the deflections and a decrease of the
buckling load for cantilevers. This tendency is more obvious in the structures with smaller
slenderness ratio. For cantilevers, the influence of shear deformation, which is most evident
around the buckling load, tends to disappear in the post buckling range.

6. CONCLUDING REMARKS

Closed-form solutions with integral expressions were derived for elastica with axial
and shear deformations. The theories employed here are the Timoshenko beam theory of
(a) Finite Displacements with Finite Strains and that of (b) Finite Displacements with Small
Strains, where both the axial and the shear deformations are considered. The solutions, so
obtained, include elliptic integrals. Thus, these elliptic integrals were further reduced to
Legendre-Jacobi's normal forms in order to utilize the accurate methods for the numerical
computation. As a result, it was known that the closed-form solutions for the Timoshenko
beam include all the three normal forms, regardless of the theories. However, in the specific
case when jJ. = 1, the solutions for the theory of (a) Finite Displacements with Finite Strains
only include the normal forms of the first and the second kinds. The above results are rather
different from the extensional elastica without shear deformations.

As numerical examples, two kinds of simple structures under large axial forces, respec
tively, tensile and compressive, were analyzed. Making use of the calculated results, we
examined the effect of the shear deformation together with the accuracy of the approximate
theory of (b) Finite Displacements with Small Strains in comparison with the exact theory
of (a) Finite Displacements with Finite Strains. As a result, the shear deformation was
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found to increase the deflections of the structures and to reduce the buckling loads of
cantilevers. This tendency is more pronounced as the slenderness ratio ), becomes smaller.
Regarding the accuracy of the approximate theory under the assumption of small strains.
the load-displacement curves of this theory deviate from those of the exact theory. as the
slenderness ratio), and the ratio of shear rigidity to axial rigidity J.l take smaller values. This
means that the approximate theory of (b) Finite Displacements with Small Strains loses its
accuracy in stocky beams or columns with less shear deformation.
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APPENDIX: BIFURCATION LOAD OF CANTILEVER

Bifurcation loads are derived from the elliptic integral solutions. The derivation procedure is shown only for
the theory of (a) Finite Displacements with Finite Strains because this procedure is the same regardless of the
theories.

Since Sf is zero in perfect systems, eqn (16b) is reduced to the following form after the substitution of the
boundary conditions given by eqns (36a--<:),

{
2F. F: ( I I) }'.'2

f= - Ei(coscP-COScPi)-m EJ- kGA (cos2cP-cos2cPi) .

Using eqn (AI) along with the transformation defined by

eqn (17) is expressed in terms of 9 as

(AI)

(A2)

(A3)

The above equation holds on the bifurcation path and F: approaches the bifurcation load F= when cPi tends to
zero. After the manipulation of cPl .... 0, eqn (A3) can be integrated as follows:

(A4)

(A5)

Equation (A4) can be solved for F= as

F=/2 x 2

-a = 2{I+JI-x2(1-1l)/i.2j.·

This buckling load exactly coincides with that derived by Timoshenko and Gere (1961, p. 143) for a helical spring
where the change in length of the spring is taken into account during compression. They derived the above formula
from a linearized theory.
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(A6)

Following the same procedure. the bifurcation load for the theory of (b) Finite Displacement with Small
Strains can be obtained. as shown below. from the corresponding integral equations in Table 2:

F 12 7[2

';1 =2(1+JI+7[2Jl/i.2)·

The above also coincides with another formula shown by Timoshenko and Gere (1961, p. 135) for a column with
shear deformation. Considering that the axial deformation is small during compression. they ignored it in their
derivation.


